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This is calculations of a ferromagnetic resonance (FMR) describing the magnetization dynam-
ics of a ferromagnetic material illuminated by a linearly polarized electromagnetic wave. In this
configuration, precession is excited exclusively by the right-hand circularly polarized component of
the wave, whose magnetic field rotates synchronously with the natural precession. Conversely, the
left-hand circularly polarized component, whose magnetic field rotates in the opposite direction, has
no effect on the FMR. The main part of this work was completed on January 15, 2025.

I. CONDITIONS, ASSUMPTIONS, AXIS
DIRECTIONS

(condition 1):The equilibrium magnetization is per-
pendicular to the plane (the z- direction). It is the case of
a relatively thin ferromagnetic field, when the interfacial
anisotropy overcomes the demagnetization field.

(condition 2): Oscillating Magnetic field is linearly
polarized along the x-axis.

(condition 3): The bias magnetic field H, and, there-
fore, the Larmor frequency wy do not depend either on
precession angle 6 or precession phase ¢. It means that
the variation of precession angle is small and there is no
Kittel effect.

(approximation 1): The calculations are done ignor-

ing the precession damping. Later, the precession damp-
ing is included as the damping torque.

H.

FIG. 1. Precession geometry. The equilibrium magnetization
is perpendicular to the film (the z- direction). The external
magnetic field H. is applied along the easy axis (the z- direc-
tion). The precession is clockwise direction with respect to
the external magnetic field (when to look from back to tip of
the arrow)

II. FINAL RESULTS

During the magnetization precession around the z-axis,
components of the magnetization are described as:

m,(t) = M -sin(0(t)) - cos(wrt + ¢(t))
my(t) = M -sin(0(t)) - sin(wrt + ¢(t)) (1)
m(t) = M - cos(0(t))

where m,,m,,m. are component of magnetization M.
The easy magnetic axis, and thus the precession axis, is
aligned along the z-axis. The precession angle, 6, varies
with time. In the case of ferromagnetic resonance (FMR),
0 oscillates periodically around a relatively small average
precession angle. In the case of parametric reversal, the
average precession angle increases continuously until full
magnetization reversal occurs. The precession frequency,
wr,, also varies with time. Typically, wy is larger for
smaller precession angles 6 and decreases as 6 increases.
The precession phase, ¢, varies with time. When ¢ is in
phase with the oscillations of the magnetic field of the
pumping electromagnetic wave, the precession angle 6
increases. When ¢ is out of phase, the precession angle
0 decreases.

The magnetization precession is mathematically de-
scribed by a solution to the Landau-Lifshitz equation
for a system driven by an electromagnetic field of fre-
quency w. The temporal dynamics are governed by a set
of two coupled differential equations. The first equation
describes the torque-induced evolution of the precession
angle 6, while the second governs the evolution of the
precession phase . These equations (See Eq. 25), which
must be solved simultaneously, are:

8_2 =0.5- Quw - sinf[(w — wp)t — ¢] @)
o =—-05- QMWm cos[(w —wr)t — ¢]
where w; = ~vH, is the Larmor frequency, Qunw =

~vHpw is the precession pumping strength and Hyrw
is the magnetic component of the pumping microwave
electromagnetic field;

It is important to note that the dynamic equation is
absolutely the same as in the case of a right- rotating



magnetic field with half amplitude. Therefore, all results
obtained for right- circularly- polarized microwave pump
can be directly applied for the case of the linearly - po-
larized microwave pump

It is important to note that the solution (2) was ob-
tained from Landau- Lifshitz equation without usage of
any approximations. Set of differential equations Eqs. 2
is non-linear and should be solved either numerically or
using some approximations.

IIT. SOLVING LL EQUATIONS. NO
APPROXIMATIONS IN USE

The magnetization dynamic is calculated by solving
the Landau-Lifshitz equation containing unchanged bias
magnetic field H, and the oscillating magnetic field Hp;w
of electromagnetic microwave, which excites the dynam-
ics.

There is a bias perpendicular magnetic field H, =
H..i + Hipg, where Hyp, is the internal unchanged mag-
netic field and H.,; is the bias perpendicular magnetic
field.

The Landau-Lifshitz (LL) equation describes the mag-
netization dynamic as :

om . L

where + is the electron gyromagnetic ratio, H is un-
changed bias magnetic field and Hw is oscillating mag-
netic field with the frequency w (the magnetic component
of the pumping microwave field), w is the frequency of the
microwave field, the microwave field is linear- polarized.
The magnetic field the electromagnetic wave is in the
plane of the spin precession (See Fig. 77?) :
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The scalar form of the Eq. 3 is
281“ = —wrimy
T = wpmg — Quw - m cos(wt) 9)
8g12 = Qprwmy cos(wt)

where the Larmor frequency wy = vH,, which is the
precession frequency, and Qyw = YHpyw is the pre-
cession pumping strength of the pumping microwave.
It should be noted that wy is substantially larger than
Qpw. If wy, is typically around 10 GHz, Qpsy is much
smaller of about 1 MHz and less.

Introduction of new unknowns

My =My +1-My M_ =My — 1My

matm_ my—m_ (10)
2 21

My = my =

and addition/ subtraction of the 1st and 2nd equations
of Egs. (9) give

om . .

5 = iwrm_ — iQyw - m cos(wt)
aglt’ = —iwrm_ +iQpw - m, cos(wt) (11)
om.

i :Q]\/”/V"“r;Z = cos(wt)

The solution of Eq. 11 can be found in form of the
spin precession, which can be described as

my(t) = M - sin(6(t)) - cos(¢(t))
my(t) = M -sin(6(t)) - sin(p(t)) (12)
m(t) = M - cos(6(t))

where 6(t) and ¢(t) are new time- dependent unknowns
and M =

is time-independent:

m2 +m? + m? is the magnetization, which

oM
ot T =0.

Summing and substituting 1st and 2nd Eqs. of 12
gives:
my (t) = M -sin (0 (t)) - e¢®)
m_ (t) = M -sin (0 (t)) - e~ (13)

m, (t) = M - cos (6 (t))

Differentiating Eqs. 13 gives

ag;* =M -e'® (cos(@)g +i42 sm(@))
Ime — M- e~ (cos(f )% — % s1n(0)) (14)

ot ot
%o = M- (= sin(0)3})

Substitution of Eqgs.
over M gives

14, 13 into Eq. 11 and dividing



FIG. 2. Precession geometry. 6 is the precession angle of
magnetization M with respect to the easy axis (the z- axis).
The ¢ is the precession phase with respect to the x- axis.

[cos 90 z sm(&)} et =
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= —jwy, sm(ﬁ) ~ + iQpw cos(0) cos(wt)
—sin(6) 92 = Quw cos(wt) - sin(f) gt

dividing the both sides of 1st equation over cos(@)ew
and both sides of the 2nd equation over cos(#)e ™ give

920 4+ z?) tan(f) = iwy, tan(#) — iy cos(wt)e ™

% — 22 tan(0) = —iwy, tan() + i Qpw cos(wt)e T

5S¢ = —Sw cos(wt) sin(¢)

(16)

It is important to note that only two of three equations
of (Eq. 16) are independent. It is because summing the
1st and 2nd equations gives the 3rd equation.

The 3rd equation and subtraction of the 1st and 2nd
equations gives the following system of two differential
equations:

192 ) ® tan(f) =
= iwy, tan(f) + i - 0.5 - Qpyw cos(wt) [—e~ — eti?]
% = —Qunw cos(wt) sin(¢)
(17)

Dividing the 1st equation over i - tan(f) gives the solu-
tion of LL equations as

9% — wp — Qupw —7 cos(wt) cos(¢)
Bt wr, MW tan(9) 18
%% = —Qarw cos(wt) sin(¢) "
Since
cos(x) cos(y) = 0.5 [cos(z — y) + cos(z + y)] (19)

cos(z) sin(y) = 0.5 [—sin(z — y) + sin(z + y)]

Eq. (18) becomes

& = wi, — yous [cos(wt — ¢) + cos(wt + ¢)]

90 = Quw [sin(wt — ¢) — sin(wt + ¢)]

(20)

It is important to note that the solution (18) was ob-
tained from LL equations (3) without usage of any ap-
proximations

In the absence of the oscillating magnetic field Hpyw =
0 (absence of the microwave pump), which leads to and
Quw = 0, Eq.20 becomes

L =uw
g (21)
ot

which has a solution
=wrt+

g : 90]: ¢0 (22)

It describes the magnetization precession at a constant
angle 0 at the Larmor frequency wy,
Introduction of new independents as

=wrt t
)z 90L+ngft()) (23)

simplifies Eq. 20 as

9¢ _ _ Qpw |

t 2~tan(90+01(t))
Toos((w — w1t~ p(1)) + cos(w +wn)t + GO (o
% — Quw

t

Tsin((w ™ wp)t — o(t)) — sin((w + wr )t + (1))

The right side of each equation consists of two parts.
The first part describes the oscillation of torque at low
frequency w — wy,, while the second part describes the
oscillation of torque at high frequency w + wy,, , which is
approximately twice the FMR frequency wy. Each torque
periodically forces the precession angle 6 to increase and
decrease. However, because the second torque oscillates
over an extremely short period, the change in the preces-
sion angle, which it causes, is negligible. Therefore, the
second torque can be neglected.

Ignoring in Eqs.(24) the parts oscillating with double
frequency w + wy, the solution is obtained as

a7 = ~zan(va Loy Cos((w —wr)t = (1)) (25)
99 = 2w gin((w — wy )t — (1))

This is the final solution. The 2nd Eq. describes the
torque inserted by the microwave on spin precession. The
torque forces the precession angle 8 either to increase or
to decrease. The 1st equation describes the modulation
of the precession phase.



It is important to note that the dynamic equation is obtained for right- circularly- polarized microwave pump
absolutely the same as in the case of a right- rotating  can be directly applied for the case of the linearly - po-
magnetic field with half amplitude. Therefore, all results larized microwave pump



