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This work presents a calculation of ferromagnetic resonance (FMR), describing the magnetization
dynamics of a ferromagnetic material under illumination by an electromagnetic wave. The analysis
focuses on the case where the magnetic field component of the wave rotates in the direction opposite
to the natural spin precession. In this configuration, the magnetization precession is not excited,
and no resonance response occurs. There is a weak torque that oscillates at double the Larmor
frequency, has a negligible effect on the magnetization and does not contribute to ferromagnetic
resonance (FMR).The main part of this work was completed on January 15, 2025.

I. CONDITIONS, ASSUMPTIONS, AXIS
DIRECTIONS

(condition 1):The equilibrium magnetization is per-
pendicular to the plane (the z- direction). It is the case of
a relatively thin ferromagnetic field, when the interfacial
anisotropy overcomes the demagnetization field.

(condition 2): Oscillating Magnetic field is circular
polarized, and its polarization is rotating in the xy-plane
opposite to the magnetization rotation.

(approximation 1): The calculations are done ignor-
ing the precession damping.

II. FINAL RESULTS

In this case, the torque oscillates at twice the Lar-
mor frequency. As a result, its polarity reverses within
an extremely short time—far too rapidly to produce any

FIG. 1. Precession geometry. The equilibrium magnetization
is perpendicular to the film (the z- direction). The external
magnetic field Hz is applied along the easy axis (the z- direc-
tion). The precession is clockwise direction with respect to
the external magnetic field (when to look from back to tip of
the arrow). The rotation of magnetic field of the electromag-
netic field is in the opposite direction (the counterclockwise
direction)

noticeable change in the precession angle. Therefore, the
time-averaged torque has no net effect on the magneti-
zation precession and can be neglected.
The torque is calculated (See Eq.23) as

∂θ1
∂t

= −ΩMW · sin[(ω + ωL)t− φ(t)] (1)

where where ωL = γHz is the Larmor frequency,
ΩMW = γHMW is the precession pumping strength and
HMW is the magnetic component of the pumping mi-
crowave electromagnetic field; θ is the magnetization an-
gle (precession angle) with respect to the easy axis and
φ is phase difference between magnetization precession
and the oscillating magnetic field, γ is the electron gyro-
magnetic ratio.
The phase of the torque is oscillating as (see Eq. 23 )

∂φ

∂t
= − ΩMW ·

tan(θ0 + θ1)
cos[(ω + ωL)t− φ(t)] (2)

III. SOLVING LL EQUATIONS. NO
APPROXIMATIONS IN USE

The magnetization dynamic is calculated by solving
the Landau-Lifshitz equation containing unchanged bias
magnetic fieldHz and the oscillating magnetic fieldHMW

of electromagnetic microwave, which excites the dynam-
ics.
There is a bias perpendicular magnetic field Hz =

Hext +Hint, where Hint is the internal unchanged mag-
netic field and Hext is the bias perpendicular magnetic
field.
The Landau-Lifshitz (LL) equation describes the mag-

netization dynamic as :

∂m⃗

∂t
= −γm⃗× (H⃗ + H⃗MW ) (3)

where γ is the electron gyromagnetic ratio, H⃗ is un-

changed bias magnetic field and H⃗MW is oscillating mag-
netic field with the frequency ω (the magnetic component
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FIG. 2. Geometry of illuminating microwave field. The plane
of polarization rotation (the xy-plane) is the same as the plane
of the spin precession. The polarization rotation (counter-
clockwise direction with respect to the external magnetic field
Hz) is opposite to the direction of the spin precession (the
clockwise direction).

of the pumping microwave field), ω is the frequency of the
microwave field, the microwave field is circular- polarized
with magnetic field circulary rotating in the opposite di-
rection as the direction of spin precession (See Fig. 2)
:

H⃗ =

Hx

Hy

Hz

 =

 0
0
Hz

 (4)

H⃗MW = HMW

 cos(ωt)
− sin(ωt)

0

 (5)

m⃗ =

mx

my

mz

 (6)

Then

m⃗× H⃗ = Hz

 my

−mx

0

 (7)

Then

m⃗×H⃗MW = HMW

− sin(ωt)

−mz

0
mx

+ cos(ωt)

 0
mz

−my


(8)

The scalar form of the Eq. 3 is

∂mx

∂t = −ωLmy − ΩMW ·mz sin(ωt)
∂my

∂t = ωLmx − ΩMW ·mz cos(ωt)
∂mz

∂t = ΩMW [my cos(ωt) +mxsin(ωt)]

(9)

where the Larmor frequency ωL = γHz, which is the
precession frequency, and ΩMW = γHMW is the preces-
sion pumping strength of the pumping microwave. ωL is
typically around 10 GHz, ΩMW is much smaller of about
1 MHz and less.
Introduction of new unknowns

m+ = mx + i ·my m− = mx − i ·my

mx = m++m−
2 my = m+−m−

2i

(10)

and addition/ subtraction of the 1st and 2nd equations
of Eqs. (9) give

∂m+

∂t = iωLm+ +ΩMW ·mz [− sin(ωt)− i · cos(ωt)]
∂m−
∂t = −iωLm− +ΩMW ·mz [− sin(ωt) + i · cos(ωt)]

∂mz

∂t = ΩMW

[
m+−m−

2i cos(ωt) + m++m−
2 sin(ωt)

]
(11)

or

∂m+

∂t = iωLm+ − i · ΩMW ·mze
−i·ωt

∂m−
∂t = −iωLm− + i · ΩMW ·mze

+i·ωt

∂mz

∂t = ΩMW

2i

[
m+e

+i·ωt −m−e
−i·ωt

] (12)

The solution of Eq. 12 can be found in form of the
spin precession, which can be described as

mx(t) = M · sin(θ(t)) · cos(ϕ(t))
my(t) = M · sin(θ(t)) · sin(ϕ(t))
mz(t) = M · cos(θ(t))

(13)

where θ(t) and ϕ(t) are new time- dependent unknowns

and M =
√
m2

x +m2
y +m2

z is the magnetization, which

is time-independent: ∂M
∂t = 0.

Summing and substituting 1st and 2nd Eqs. of 13
gives:

m+ (t) = M · sin (θ (t)) · eiϕ(t)
m− (t) = M · sin (θ (t)) · e−iϕ(t)

mz (t) = M · cos (θ (t))
(14)

Differentiating Eqs. 14 gives

∂m+

∂t = M · eiϕ
(
cos(θ)∂θ∂t + i∂ϕ∂t sin(θ)

)
∂m−
∂t = M · e−iϕ

(
cos(θ)∂θ∂t − i∂ϕ∂t sin(θ)

)
∂mz

∂t = M ·
(
− sin(θ)∂θ∂t

) (15)

Substitution of Eqs. 15, 14 into Eq. 12 and dividing
over M gives

[
cos(θ)∂θ∂t + i∂ϕ∂t sin(θ)

]
eiϕ =

= iωL sin(θ)eiϕ − i · ΩMW · cos(θ)e−i·ωt[
cos(θ)∂θ∂t − i∂ϕ∂t sin(θ)

]
e−iϕ =

= −iωL sin(θ)e−iϕ + i · ΩMW · cos(θ)e+i·ωt

− sin(θ)∂θ∂t = ΩMW

2i sin(θ)
[
e+i·ϕte+i·ωt − e+i·ϕte+i·ωt

]
(16)
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FIG. 3. Precession geometry. θ is the precession angle of
magnetization M with respect to the easy axis (the z- axis).
The ϕ is the precession phase with respect to the x- axis.

dividing the both sides of 1st equation over cos(θ)eiϕ

and both sides of the 2nd equation over cos(θ)e−iϕ give

∂θ
∂t + i∂ϕ∂t tan(θ) = iωL tan(θ)− i · ΩMW · e−i·(ωt+ϕ)

∂θ
∂t − i∂ϕ∂t tan(θ) = −iωL tan(θ) + i · ΩMW · ei·(+ωt+ϕ)

∂θ
∂t = −ΩMW sin(ωt+ ϕ)

(17)
It is important to note that only two of three equations

of (Eq. 17) are independent. It is because summing the
1st and 2nd equations gives the 3rd equation.

The 3rd equation and subtraction of the 1st and 2nd
equations gives the following system of two differential
equations:

i∂ϕ∂t tan(θ) =
= iωL tan(θ)− i · 0.5 · ΩMW

[
e−i·(ωt+ϕ) + e+i·(ωt+ϕ)

]
∂θ
∂t = −ΩMW sin(ωt+ ϕ)

(18)
Dividing the 1st equation over i · tan(θ) gives the solu-

tion of LL equations as

∂ϕ
∂t = ωL − ΩMW

1
tan(θ) cos(ωt+ ϕ)

∂θ
∂t = −ΩMW sin(ωt+ ϕ)

(19)

It is important to note that the solution (19) was ob-
tained from LL equations (3) without usage of any ap-
proximations

In the absence of the oscillating magnetic fieldHMW =
0 (absence of the microwave pump), which leads to and
ΩMW = 0, Eq.19 becomes

∂ϕ
∂t = ωL
∂θ
∂t = 0

(20)

which has a solution

ϕ = ωLt+ ϕ0

θ = θ0
(21)

It describes the magnetization precession at a constant
angle θ0 at the Larmor frequency ωL

Introducing new independents as

ϕ = ωLt+ φ(t)
θ = θ0 + θ1(t)

(22)

simplifies Eq. 19 as:

∂φ
∂t = −ΩMW

1
tan(θ0+θ1(t))

cos[(ω + ωL)t− φ(t)]
∂θ1
∂t = −ΩMW sin[(ω + ωL)t− φ(t)]

(23)

This is the final solution. The 2nd Eq. describes the
torque inserted by the microwave on spin precession. It
oscillates at the high frequency ω+ωL, which is approx-
imately twice the FMR frequency ωL. This torque pe-
riodically forces the precession angle θ to increase and
decrease. Because this occurs over an extremely short
period,the change in the precession angle within a pe-
riod is negligible. The net torque averages to zero.


