
 
Brillouin and Langevin functions 

 
 
Langevin model  
 
Model aim: The Langevin model describes the energy distribution of electrons of 
different spin direction (the spin distribution) in an external magnetic field  
 
If is the angle between magnetic moment  at H, the magnetic energy will be 
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The number of electrons of energy Em follows the Boltzmann statistics 
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Number of electrons which magnetic moment between    and  +d,   and  +d, 
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Integration  over  gives 
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Eq. 4 is normalized to the total number nd of d- electrons 
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Integration gives 
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Therefore, distribution of electrons over angles is  
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The magnetic moments perpendicular to H will cancel on the average, and the total 
magnetic moment m along H is calculated as 
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The integration by parts gives 



 

 
0

9
M H

L
M kT

    
 

 

where M is the saturation magnetization and L(x) is the Langevin function 
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Ferromagnetism 
 
Mean field. Weiss theory. 
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where F is the total magnetic field, I is the exchange field due to exchange interaction and 
the internal magnetic field, which is induced by the magnetic moments. 
 
The exchange field I is changed proportionally to the change of magnetization 
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where I0 is the exchange field at saturated magnetic moment. 
 
Substitution of  Eqs.9,11 into  Eq.21 gives 
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Substitution of  Eqs.20 into  Eq.22 gives 
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Or without external field 
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Curie temperature 
It is the case when the magnetization becomes zero M=0 and therefore the exchange field 
becomes zero as well I=0 
 
Since 
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Eq. 24 can be transformed at I->0 
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Using Eq.24 at small I gives 
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Where Tc is Curie temperature 
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As I is linearly proportional to M 

 0
0 0

3
24ck TM M

I I
M M 


   

 

 
0 0 0

3
3 24c ck T TM M M

L L
M kT M M T




   
    

   
 

 

With external magnetic field 
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Derivative 
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