Ambiguity for the evaluation of the AHE and ISHE contributions. Ambiguity for the evaluation of the spin polarization.

The Hall effect in a ferromagnetic metal is the sum of three contributions: (contribution 1) Ordinary

Hall effect (OHE), which is proportional to an external magnetic field H; (contribution 2) Anomalous Hall effect (AHE), which is proportional to the magnetic moment of localized electrons M; and Inverse Spin Hall effect (ISHE), which is proportional to the magnetic moment of conduction electrons m;

In a ferromagnetic nanomagnet with the perpendicular magnetic anisotropy (PMA), the local magnetic moments are firmly fixed perpendicularly to plane and do not change with an external magnetic change. As a result, the AHE contribution in nanomagnet is a constant vs. H.

The ISHE contribution is proportional to the spin

,0 1 S S S S H P_{S} $H_{\overline{S}}$ $P_{s} = \frac{H}{1 + H}$ $H_{\rm s}$ $+$ $=$ $+$

polarization of the conduction electrons

The dependence of Hall angle α_{Hall} on an external perpendicular magnetic field H in nanomagnet with PMA is described as

$$
\alpha_{Hall} = \alpha_{OHE} \cdot H + \alpha_{AHE} + \alpha_{ISHE} \cdot \frac{P_{S,0} + \frac{H}{H_S}}{1 + \frac{H}{H_S}} \quad (S1.1)
$$

Fig.S1.1 Ambiguity of the data fitting. Two possible fittings: (solid lines) P_s =60 %, α_{ISHE} = 827 mdeg α_{AHE} = 400 mdeg (dash lines) $P_s=20\%$, $\alpha_{\text{ISHE}}=137$ mdeg α_{AHE} = 1080 mdeg. .H_S=3.985 kGauss and α_{OHE} =0.2 mdeg/kGauss for both cases. Both fitting give the identical total Hall angle (pink line) and its 1st derivation.

where α_{OHE} is the angle of the OHE contribution, α_{AHE} is the angle of the AHE contribution and α_{ISHE} is the angle of the ISHE contribution, $P_{S,0}$ is spin polarization at H=0 and H_S is the scaling magnetic field.

The ambiguity is originated from the fact that the functional dependence (S1) does not change when the set of three initial fitting parameters $(\alpha_{AHE} \alpha_{BHE} P_{s,0})$ changes to a new set $\begin{pmatrix} \alpha_{AHE}^* & \alpha_{ISHE}^* & P_{S,0}^* \end{pmatrix}$, which is related to the initial set as e α_{Hall} on an external α_{H} or $\frac{2}{4}$ of $\frac{3}{8}$ io

H in nanomagnet with PMA
 $P_{S,0} + \frac{H}{H_S}$ fittings: (solid lines) $P_s = 60 \%$, $\alpha_{\text{SHE}} = 827 \text{ mdeg } \alpha_{\text{At}}$
 $\alpha_{\text{H}} = \frac{400 \text{ mdeg}}{400 \text{ mdeg}}$ (dash

$$
\alpha_{\text{ISHE}}^* = \alpha_{\text{ISHE}} \frac{1 - P_{\text{S},0}}{1 - P_{\text{S},0}^*} \frac{P_{\text{S},0}^*}{P_{\text{S},0}} \quad (S1.2)
$$

$$
\alpha_{AHE}^* = \alpha_{AHE} + \alpha_{ISHE} \frac{P_s - P_s^*}{P_s (1 - P_s^*)}
$$
 (S1.3)
In order to prove this fact, a comparison of Eq. (S1.1) for two sets of parameters gives

In order to prove this fact, a comparison of Eq. (S1.1) for two sets of parameters gives

$$
\alpha_{AHE}^* = \alpha_{AHE} + \alpha_{ISHE} \frac{P_S - P_S^*}{P_S (1 - P_S^*)} \quad (S1.3)
$$

In order to prove this fact, a comparison of Eq. (S1.1) for two sets of parameters gives

$$
\alpha_{AHE} + \alpha_{ISHE} \cdot \frac{1 + x \frac{1}{P_{S,0}}}{1 + x} = \alpha_{AHE}^* + \alpha_{ISHE}^* \cdot \frac{1 + x \frac{1}{P_{S,0}^*}}{1 + x} \quad (S1.4)
$$

where $x = H / H_S$. Eq.(S1.4) is simplified as

where $x = H / H_s$. Eq.(S1.4) is simplified as

$$
\alpha_{\text{AHE}}^{*} = \alpha_{\text{AHE}} + \alpha_{\text{ISHE}} \frac{P_{s} - P_{s}^{*}}{P_{s} (1 - P_{s}^{*})} \quad (S1.3)
$$

In order to prove this fact, a comparison of Eq. (S1.1) for two sets of parameters gives
\n
$$
\frac{1 + x \frac{1}{P_{s,0}}}{1 + x} = \alpha_{\text{AHE}}^{*} + \alpha_{\text{ISHE}}^{*} \cdot \frac{1 + x \frac{1}{P_{s,0}^{*}}}{1 + x} \quad (S1.4)
$$

\nwhere $x = H / H_{s}$. Eq.(S1.4) is simplified as
\n
$$
\alpha_{\text{AHE}} (1 + x) + \alpha_{\text{ISHE}} \cdot \left(1 + x \frac{1}{P_{s,0}}\right) = \alpha_{\text{AHE}}^{*} (1 + x) + \alpha_{\text{ISHE}}^{*} \cdot \left(1 + x \frac{1}{P_{s,0}^{*}}\right) \quad (S1.5)
$$

\nComparison of the coefficients at x^{0} gives
\n $\alpha_{\text{AHE}} + \alpha_{\text{ISHE}} = \alpha_{\text{AHE}}^{*} + \alpha_{\text{ISHE}}^{*} \quad (S1.6)$
\nComparison the coefficients at x^{1} gives
\n $\alpha_{\text{AHE}} + \frac{\alpha_{\text{ISHE}}}{P_{s}} = \alpha_{\text{AHE}}^{*} + \frac{\alpha_{\text{ISHE}}^{*}}{P_{s}^{*}} \quad (S1.7)$
\nSolution of Eqs. (S1.6),(S1.7) gives Eqs. (S1.2),(S1.3)
\nFigure S1.1 compares the OHE, ISHE, AHE contributions for two sets of parameters.

Comparison of the coefficients at x^0 gives $\alpha_{_{AHE}} + \alpha_{_{ISHE}} = \alpha_{_{AHE}}^* + \alpha_{_{ISHE}}^* \quad \ \ \text{(S1.6)}$ Comparison the coefficients at x^1 gives

$$
\alpha_{AHE} + \frac{\alpha_{ISHE}}{P_S} = \alpha_{AHE}^* + \frac{\alpha_{ISHE}^*}{P_S^*} \quad (S1.7)
$$

Solution of Eqs. (S1.6),(S1.7) gives Eqs. (S1.2),(S1.3)

Figure S1.1 compares the OHE, ISHE, AHE contributions for two sets of parameters.