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This classical model is based on some oversimplified assumptions. This model ignores the specific 

features of the spin-orbit interaction, which creates the magnetic anisotropy.  However, this model 

is a very simple and can be used for a rough estimate. 

 

In this model, the total magnetic energy, which is a sum of the energy of the magnetic anisotropy 

EPMA and the magnetic dipole energy can be calculated as 
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in which the energy of the magnetic anisotropy is assumed to be proportional to a square of the 

magnetic component Mz along the easy axis. Eq.(1a) can be written in the similar form as 

     2cos cos 1PMAE E M H          

where θ is the angle between the magnetization M and the film normal, φ is the angle between the 

magnetic field H and the film normal, EPMA is the energy of the perpendicular magnetic anisotropy, 

which includes the energy due to the demagnetization field. 

 

 

Part 2. Equilibrium state. There is no an external magnetic field.  
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In the case H=0, the magnetic energy is calculated from Eq.( 1) as 

   2cos 1.2PMAE E     

Eq. (1.2) has two minimums at =0 deg and 180 deg corresponding to two equilibrium states when 

magnetization is parallel to the easy axis. The minimum energy equals Emin=-EPMA.  

 

Eq. (1.2) has two maximums at =+90 deg and -90 deg corresponding to two directions parallel to 

the hard axis. The maximum energy equals Emax=-0. 

 

 

Part 3. In-plane magnetic field Hx. Calculation of anisotropy field Hani 

In this case there is only a component of the magnetic field Hx along the hard axis, Hz=0 and Eq.(1a) 

is simplified to  
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A stable state corresponds to the minimum of the energy, which can be found from the condition: 

 2
0 2 4x

PMA x
x

ME
E H

M M


     


 

Solution of Eq.(4) is 
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where 

 2
6PMA

ani

E
H b

M
  

is the anisotropy files, which is the magnetic field, at which the magnetization M is 

aligned along the hard axis. 

The anisotropy field Hani linearly increases with an increase of PMA energy EPMA . Since 

EPMA  is proportional to  M2 , (see Eq.31),  Hani  is linearly proportional to 
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magnetization M. 

 

The linear dependence of Eq.(6) is important, often used and can be easily verified 

experimentally. That is the reason why the oversimplified Neel model was used for a 

long tome. 

It should be noted that the correct model, which is used the properties of the spin- orbit 

interaction, gives the same linear dependence of Eq.(6)  

  

 

Part 4 There are both Hx and Hz of the external magnetic field 

In this case Eq.(1a) is 
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or 
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A stable state corresponds to the minimum of the energy, which can be found from the condition: 
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where  
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is anisotropy field in absence of Hz. 

 0 2 2
10x ani z

x x

M M
H H H b

M M M
  


 

The solution of Eq.(10) is  
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where 
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Part 5. Energy barrier for the magnetization switching 

In this the case when a magnetic field is applied along the magnetic easy axis (perpendicularly to the 

film) ( φ=0), the energy is calculated from Eq.(1) as 

     2cos cos 1PMAE E M H c        

The maximums and minimums of energies can be found from the condition 
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The energy maximum is at the magnetization angle max 
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Substitution of Eq.(6b) into Eq.(21) gives 

   maxcos 21
ani

H

H
    

In the case when the external field H is substantially smaller than the anisotropy field Hani, the 

magnetization angle of the maximum energy is closed to the hard axis direction max ~ +90 deg and 

-90 deg. 

 

Substitution of Eq. (21) into Eq.(1c)  gives the maximum energy as 
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The energy minimum is at θ min=0 and 180 degrees, the minimum energy is 
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The energy barrier is a difference between the minim and maximum energy 
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or 
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Eq.(6b) gives 
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Substitution of Eq.6c into Eq.24 gives 
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The magnetization switching occurs at magnetic field equals to the coercive field Hc, which is 

substantially smaller that Hani. (Hc << Hani)   In this case 
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Substitution of Eq.6c into Eq.26 gives 

 27barrier PMAE E H M    

Note it is the energy barrier in the case when the magnetic field is along the easy axis and the 

magnetization direction is changing. It means that it is the case of the magnetization precession. 

 

 Part 6. Comparison of this oversimplified Neel model with the full model, which 

includes properties of the spin-orbit interaction 

In the Neel model, the magnetic energy is described as 
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where M is the magnetization, H is external magnetic field Mz is the magnetization 

component along the easy axis and Mx is the magnetization component along the hard 

axis. Eq. 10.1 can be wrote as 
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This the full model, which includes properties of the spin-orbit interaction, describes the 

magnetic energy as 

       2 21 1 1 1 30z so demag so z z x xE M k k k H M H M M          

 

Comparison of Eqs.(1c) and (30) gives 
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From comparison of the 2nd and 3rd term, it can be concluded that the oversimplified 

Neel model are fully identical when the coefficient of the spin-orbit interaction equals to 

zero: 

 

 0 32sok   

It is nearly the case for a single-layer ferromagnetic nanomagnet, but it is not the case 

for a multilayer nanomagnet. 

 


