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PMA energy. Calculation of magnetic energy experienced by a single 
electron. 
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Geometry:  The equilibrium magnetization is perpendicular to interface. The electron 
experiences the demagnetization field Hdemag and the magnetic field HSO of the spin- 
orbit interaction only in the perpendicular- to- interface direction (z-direction). There 
is no Hdemag and HSO of in the in-plane direction (x-direction). 
 
Part 1. Magnetic fields, which the electron experiences: 
 
(field 1): External magnetic field, which is applied in both the perpendicular- to- 
interface direction Hz and in the in-plane direction Hx. 
 
(field 2): Magnetic field of magnetization induced by all aligned electrons in a 
nanomagnet. This field can be imagined as a magnetic field inside the magnetic dipole 
induced by the electron spin. The average spin is a nanomagnet called the 
magnetization M. The magnetic field of magnetization is linearly proportional to the 
electron spin.  In simplified units, the magnetic field induced by the spin equals to M.  
 
(field 3) Demagnetization field Hdemag. The magnetic field, which is generated at 
interface due to broken chain of aligned spins. The direction of Hdemag  is 
perpendicular- to- interface and opposite to M. The Hdemag can be calculated as 

 1.1demag demag zH k M    

where kdemag is the demagnetization factor. For an ideal plain film with an ideal 
interface kdemag=1 and there is no intrinsic field in a perpendicularly- magnetized film. 
However, it is an unrealistic case. In a real nanomagnet the kdemag is slightly smaller 
than 1 ( kdemag<1) due to the surface roughness and the surface imperfection.  
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(field 4) Magnetic field HSO of spin- orbit interaction, which is a relativistic magnetic 
field induced by an electrical field of atomic nuclear. It is directed along the orbital 
deformation (the z- direction in this case) and is proportional to the total magnetic 
field, which is applied along the x- direction.  

 ˆ 1.2SO SO totalH k H a   

where Htotal. is the total applied eternal magnetic field and kso is the constant of the 
spin-orbit interaction, which describes the strength of the spin- orbit interaction. In 
general, the kso is a diagonal matrix, because the direction  HSO  is always along to 
Htotal.  
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 due to the fact that the spin-orbit interaction by itself cannot break the time-inverse 
symmetry.  
The kso can be both positive, when Hso is directed along Htotal , and negative, when Hso 
is directed opposite to Htotal 
 
The total magnetic field Htotal is a sum of external magnetic field H and the intrinsic 
magnetic field induced by magnetization. Since the direction of the demagnetization 
field is always perpendicular to the interface (along the z- axis), the intrinsic field iis   
 Hintr=Mz-kdemag Mz. and, therefore, the spin- orbit field HSO  in z- direction can be 
calculated as 

      , , , , intr,z , 1 1.2SO z SO z total z SO z z SO z z demag zH k H k H H k H k M          

In the direction along interface (the x-direction) , there is no demagnetization field 
and the intrinsic field just equals to the magnetic field M of the magnetization.  he 
spin- orbit field HSO  in z- direction can be calculated as 

      , , ,x ,x intr,x ,x 1.2SO z SO x total SO x SO x xH k H k H H k H M         

 
------------ 
In the case of zero orbital moment, the magnetic energy of an electron is a product of 
the magnetization  M and the total magnetic field, which the electron experiences: 
H+M+ Hdemag + HSO  
 
The magnetic energy can be calculated as 

   , ,z 1.3all all x x all z x zEnergy H M H M H M Energy Energy       
 

 

Substituting Eq.(2) into Eq.(3), the magnetic energy from z- components is calculated 
as 
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The magnetic energy from x- components is calculated as 

      , ,x1 1.5x x x SO x x so x x xEnergy H M H M k H M M          
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Addition of Eq.(1.4) and (1.5) gives 

        ,x ,1 1 1 1.6so x x x so z z demag z zEnergy k H M M k H k M M             

Eq.(1.6) can be rewritten as 

       1 1 1 1.6x x x so z demag z zEnergy H M M k H k M M n            

where 
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Eq.(1.6n) can be simplified as  

        2 21 1 1 1 1 1.6x x so z z z so demagEnergy M H M k H M M k k d          

 
where absolute value of Magnetization, which does not change when the 
magnetization is tilted, is calculated as 

 2 2 1.7x zM M M   

 
 
(Note): The magnetic energy is negative, 
(Note) The magnetic energy is of the same form when kso,x=0 and kso,z= kso 
 
 
Part 1a. Approximation and limitations of the model 
 
(approximation 1)  Demagnetization field in the in-plane direction (the x-direction) is 
ignored as if the nanomagnet is infinitely wide 
(approximation 2)  It is assumed that the demagnetization field is the same at interface 
and in the bulk of the nanomagnet. 
(approximation 3)  It is assumed the linear depence of the magnetic field of the spin-
orbit interaction vs the total external magnetic field. 

 ˆ 1.2SO SO totalH k H a   

and the non-linear dependence is ignored. 
 
 
 
Part 2. Thickness dependence of the SO interaction 
 
The magnetic field of the spin- orbit interaction HSO is the local magnetic field and is 
not global. It means that each electron experiences a substantially different HSO 
depending on the orbital symmetry and the orbital deformation. Often ever two 
neighbor orbitals experience substantially different HSO. Usually the HSO is very 
different for an orbital deep in bulk and for an orbital at the interface due to a different 
orbital deformation and orbital symmetry.  
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The exchange interaction strongly bounds magnetic properties of different orbitals in 
a nanomagnet.  Then, the average or effective magnetic field of the spin-orbit 
interaction determines the magnetic properties of the whole nanomagnet. 
Then, the nanomagnet as one object interact with the external magnetic field (SO part) 
as 

 2.0SO SO totalH k H   

The effective constant of the spin-orbit interaction 

 , ,interface ,interface

,interface

2.1so bulk so so
so

so

k t k t
k

t t

  



 

where t is the film thickness, tso,interface is the effective thickness at interface, where the 
SO is different from the bulk value; Eq.(2.1) can be further simplified as: 
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From Eq. (2.1a) the coefficient of the SO interaction can be expressed as 

 2.2i
so b

r

k
k k

t
   

where the relative film thickness  

 
,interface

1 2.3r
so

t
t

t
   

and ki is the difference between SO coefficient at the interface relatively to the bulk 
SO coefficient 

 ,interface , 2.4i so so bulkk k k   

and kb is the SO coefficient in the bulk 
 , 2.5b so bulkk k  

------------------- 
Part 3. Equilibrium state. There is no an external magnetic field. Critical 
thickness for equilibrium magnetization direction. 
 
In the case H=0, the magnetic energy is calculated from Eq.(1.b) as 

      2 2 1 1 1 3.1z so demagEnergy M M k k       

 
There are two possible cases: 
(case 1) Equilibrium magnetization is in-plane 
That is the case when 

    1 1 1 0 3.3so demagk k     

and the minimum energy corresponds to 
 0 3.4zM   

Since 
 0 1 1 3.3demagk a    

(3.3) gives 
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From (3.3b), the condition for the in- plane equilibrium magnetization is 

 3.3
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
 

The case of the in-plane equilibrium magnetization is when k is whether negative or 
positive, but small 
 
 (case 2) Equilibrium magnetization is perpendicular-to-plane 
That is the case when 

 0 3.5so demag demag sok k k k    

and the minimum energy corresponds to 
 3.6zM M  

 
From (3.5) the condition for the perpendicular- to- plane equilibrium magnetization is 
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The case of the perpendicular- to -plane equilibrium magnetization is when k is 
positive and larger than  
 
The critical thickness tcritical, at which the equilibrium magnetization changes from the 
in-plane to the perpendicular-to-plane direction, can be calculated from condition 
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The SO coefficient, at which equilibrium direction is change from in-plane to 
perpendicular-to-plane direction, is defined as the critical SO coefficient 
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Substitution of Eq.(2.2) into Eq.(3.7a) gives 

 3.8
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
 

where tcritical is the critical relative thickness, at which equilibrium direction is change 
from in-plane to perpendicular-to-plane direction,  
From Eq.(3.8) the critical thickness can be calculated as 
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when there is no bulk anisotropy kb=0 

   
1
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k k
t

k


  

 
Also, Eq.(10) gives the relation 
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 3.10
1

demag i
b

demag critical

k k
k a

k t
 


 

 
--------------- 
Part 4: PMA. There is no perpendicular external magnetic field Hz =0 
 
PMA: Perpendicular magnetic Anisotropy 
Case of a nanomagnet, the equilibrium magnetization of which is perpendicular to the 
plane.  
In this case the magnetic energy is calculated as 

       2 2 21 1 1 1 4.1z x x x z so demagEnergy M M H M M k k         

Under an in-plane magnetic field the magnetization M does not change its magnitude, 
but only it changes the direction. Therefore, 2 2 2

z xM M M   is a constant and 

independent of Hx 

 

Eq.(4.1) can be written as 

         2 2 21 1 1 1 4.2x x x so demagEnergy M H M M M k k         

The equilibrium magnetization direction corresponds to the minimum magnetic 
energy. Minimizing the energy with respect to Mx gives 
  

      1
0 2 1 1 1 4.3x x so demag

x

Energy
H M k k

M


     


 

The solution of Eq.(4.3) is 
 

 4.4x x

ani

M H

M H
  

where the anisotropy field Hanis is calculated as 
 

      2 1 1 1 4.5anis so demagH M k k     

(physical meaning of anisotropy field): Anisotropy field is the in-plane magnetic filed, 
at which magnetization is fully turns in plane. 
 
(important property of anisotropy field): Eq.(4.4) shows that the in-plane component 
of magnetization Mx is linearly proportional to in-plane component Hx of magnetic 
field. Since a linear fitting gives a relatively high precision, a measurement of the 
anisotropy field is a highly reliable with a high precision. 
 
(property 1 of Hani) The anisotropy field Hani is linearly proportional to the 
magnetization M.  
(property 2 of Hani)  Hani increases when the coefficient of spin-orbit interaction kSO 

increases. 
 (property 32 of Hani)  Hani decreases when the demagnetization coefficient kdemag 

increases. 
  
Substitution of Eq.4.5 into Eq.1.6d gives magnetic energy E as 
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According to condition (3.5), the anisotropy field is positive for a nanomagnet with 
perpendicular- to- plane equilibrium magnetization. 
 
Eq (4.5) can be simplified as 

    2 1 4.5anis so demag demagH M k k k a    

Substitution of Eq.(3.7b) into (4.5a) gives 

 
,

2 1 4.5so
anis demag

so c

k
H M k b

k

 
    

 
 

 
Substitution of Eq.(3.10a) into Eq.(4.5a) gives the dependence of the anisotropy field 
on the critical thickness as 
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   2 1 4.6i
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Substituting (3.8) into (4.6) gives the thickness dependence of the anisotropy field 

   
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              

 

 
Simplification of Eq.(4.7)  gives the thickness dependency of the anisotropy field as 

   
,

1 1
2 1 4.8anis i demag

r critical

H M k k
t t

 
     

 
 

 
The anisotropy field increase when the nanomagnet thickness decreases. The increase 
is linearly proportional to 1/thickness. 
 
From an experimental measurement of anisotropy field vs. 1/t, the critical thickness 
can be found. 
 
---------------------------- 
Part 5. Energy of Perpendicular Magnetic Anisotropy (PMA) 
 
From Eq. (4.5)  

    1 1 1 5.1
2

anis
demag so

H
k k

M
     

 
Substitution of Eq.(5,1) into Eqs.(1.4) gives the energy as 
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   

2
z 1

2

5.2

anis z
z so z z

x x x x

x z

H M
Energy M k H M

M

Energy H M M

Energy Energy Energy

        
   

 

 

 
or 

   
2

2 1 5.3
2
anis z

x x so z z

H M
Energy M H M k H M

M
        

 
 When there is no external magnetic field  Hx=0;  Hz=0,  the magnetic energy is 
calculated from Eq.(5.3) as  

 2 5.4
2

anisH M
Energy M   

If we can switch off the spin- orbit interaction kSO=0 and demagnetization field 
kdemag=0 (just imagine it), HSO becomes zero and the magnetic energy is calculated as 
 

 2 5.5Energy M  

 
The PMA energy EPMA is defined as an energy, which is induced by the spin-orbit 
interaction minus demagnetization. Comparison of Eqs.(12) and 813) gives the PMA 
energy as 

 5.6
2

anis
PMA

H M
E   

 
(note) The anisotropy field is the parameter, which characterizes the PMA energy. 

  
 
 
Another way to define the PMA energy: (less correct) 
 
The PMA energy can be also defined as an energy, which is required in order to turn 
the magnetization fully in-plane. 
 
The external in-plane magnetic field, which is required to turn the magnetization into 
the in-plane direction, equals to the anisotropy field.) Therefore in this case Hx=Hanis 
Mx=M  Mz=0 and  from Eq.(5.3) the magnetic energy becomes 
 

 2 5.7anisEnergy M H M   

The difference between magnetic energies Eq.(5.4) and Eq. (5.7) is 

 5.8
2

anisH M
dEnergy   

which is exactly equals to the PMA energy Eq.(5.6) 
It means that the difference of magnetic energies for case when magnetization is  in-
plane and perpendicular to plane can be calculated as the energy spent by applying 
Hx:. The same difference can be calculated by the integration: 
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 
0 0

5.9
anis anisH H

PMA x xE M dH M dH    
 

 

The integration (5.9) often used to evaluate the PMA energy from measured 
dependence of Mx vs Hx. 
 
(Note) Calculation of EPMA for more complex cases by this method may give a 
systematic error (See details here:). It is much more reliable to use the 1st method 
when EPMA is calculated simply by setting kSO=0 and kdemag=0 
 
 
 
--------------- 
Part 6: PMA. There is a external magnetic field in both the perpendicular-to-
plane and in-plane directions Hz ≠ 0 Hx ≠ 0 
 
Case of a nanomagnet, the equilibrium magnetization of which is perpendicular to the 
plane.  
 
Substitution of From Eq.(4.5) into Eq.(1.6d) gives the magnetic energy as 

   
(0) 2

21 1 6.1
2
anis z

x x so z z

H M
Energy M H M k H M

M
        

where (0)
anisH is the anisotropy field in absence of the perpendicular magnetic field Hz=0, 

which is calculated by Eq. (4.5). 
Under an external magnetic field the magnetization M may change direction, but it 
does not change its magnitude. Therefore, 2 2

z xM M M   is a constant and 

independent of Hz and Hx. Then, Eq.(6.1) is simplified as 

   
(0) 2 2

2 2 21 6.2
2
anis x

x x so z x

H M M
Energy M H M k H M M

M


       

The equilibrium magnetization direction corresponds to the minimum magnetic 
energy. Minimizing the energy with respect to Mx gives the condition 

   (0)

2 2

2
0 1 6.3

2
x x

x anis so z
x x

M MEnergy
H H k H

M M M M


    

 
 

The solution of Eq.(6.3) is 

   (0) (0)2 2
1 1 6.4x x z

so
anis anisx

H M HM
k

H M HM M

 
   
  

 

 
Even though the dependence Mx vs Hx deviates from linear, it is close to a linear 
dependence and can be expressed similar to Eq.(4.4) as 

   6.5
z

x x
H

anis

H M

MH
  

in which the anisotropy field depends on Hz and can be calculated as  
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       

 

Substitution Eq.(6.5) into Eq. (6.6) gives 
 

 

 

 (0)
(0)2

1
1 6.7

1
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z

H so z
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  
   
   

 

 
 
When  the applied in-plane magnetic field is much smaller than the anisotropy field 
    6.8zH

x anisH H  

Eq.(6.7) becomes independent of Hx and  is simplified to   
 

     (0)
(0)

1 1 6.9zH z
anis anis so

anis

H
H H k

H

 
   

 
 

When condition (6.8) is not the case and the non-linear contribution of the 
dependence Mx vs Hx (Eqs. (6.5,6.6) ) is substantial,  Eq. (6.7)) can be solved by an 
iteration starting from Eq.(6.9) 
From Eq (6.9), the anisotropy field under perpendicular magnetic field Hz can be 
express as 
 

   (0) 6.10zH
anis z anis so zH H H k H     

where 

      (0) 2 1 1 1 4.5anis so demagH M k k     

is anisotropy field when Hz=0. 
From a linear fitting, an experimental measurement of Hanis-Hz, both (0)

anisH  and kso can 

be evaluated 
Substitution Eq.(2.2) into Eq.(6.10) gives the nanomagnet-thickness dependence of 
the anisotropy field as 
 

   (0) 6.11zH i
anis z anis b z

k
H H H k H

t
      
 

 

 
When the magnetization M, the coefficient of spin-orbit interaction and the anisotropy 
field are measured experimentally, the demagnetization factor can be evaluated from 
Eq. (4.5)  as: 
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 

(0)

1
21 6.12

1

anis

demag
so

H

Mk
k


 


 

 
Effective internal field 
 
Even in absence of the external magnetic field Hz, there is an intrinsic perpendicular –
to- plane magnetic field Hz,int, which holds the magnetization along the easy axis in 
the equilibrium. Then, the anisotropy field can be calculated similarly to Eq.(6.10) as: 
 

      ,int1 6.14zH
anis so z zH k H H    

where Hz is the external magnetic field and Hz,int  is the internal magnetic field 
 
Comparison of Eqs.(6.10) and (6.14) gives 
 

   (0)
,int1 6.15anis so zH k H    

 
From (6.15) the effective internal magnetic field Hz,int can be evaluated as 

   
(0)

,int 6.16
1

anis
z

so

H
H

k



 

 
 
Part 7. In-plane equilibrium magnetization.  There is no perpendicular external 
in-plane magnetic field Hx=0 
 
Case of a nanomagnet, the equilibrium magnetization of which is in-plane 
In this case the magnetic energy is calculated from Eq. (1.6d) as 

       2 21 1 1 1 1 7.1so z z z so demagEnergy M k H M M k k         

 
The equilibrium magnetization direction corresponds to the minimum magnetic 
energy. Minimizing the energy Eq.(7.1) with respect to Mz gives 
 

       1
0 1 2 1 1 1 7.3so z z so demag

z

Energy
k H M k k

M


      


 

The solution of Eq.(7.3) is 
 

 7.4z z

ani

M H

M H
  

where the anisotropy field Hanis is calculated as 

     2
1 1 1 7.5

1ani so demag
so

M
H k k

k
   


 

or 

    2
1 7.5

1ani demag so demag
so

M
H k k k a

k
  


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Substitution of Eq.(2.2) into Eq.(7.5a) gives the thickness dependence of the 
anisotropy field as 
 

   2
1 7.6

1

i
ani demag b demag

i
b

kM
H k k k

k tk
t

       
   

 

 
Substituting (3.8) into (7.6) gives 
 

   
2 1

7.7
1

demag i i
ani b b

i critical
b

M k k k
H k k

k t tk
t

                 
 

or 

   
2 1 1 1

7.7
1

demag i

ani
i critical

b

M k k
H

k t tk
t

  
  

  
 

The anisotropy field increase with an increase of nanomagnet thickness. 
 
When there is no any SO interaction kSO =0, Eq.(7.5a) gives 

 2 2 7.10ani demagH M k M    

 
 
--------------- 
Part 8: In-plane equilibrium magnetization. There is a external magnetic field in 
both in-plane and perpendicular-to-plane directions Hz ≠ 0 Hx ≠ 0 
 
Case of a nanomagnet, the equilibrium magnetization of which is in-plane 
  
 
The substitution of Eq. (7.5) into Eq.(1.6d) gives 

     
(0)

2 21 1 1 8.1
2

ani
x x so z z z so

H
Energy M H M k H M M k

M
        

where 

     ,0

2
1 1 1 7.5

1ani so demag
so

M
H k k

k
   


 

is the anisotropy field when Hx=0. Using 2 2
z xM M M   Eq(8.1) is simplified to 

     ,02 2 2 21
1 1 8.4

2
ani so

x z so z z z

H k
Energy M H M M k H M M

M


        

The equilibrium magnetization direction corresponds to the minimum magnetic 
energy. Minimizing the energy with respect to Mx gives 

     ,0

2 2

121
0 1 8.5

2

ani soz
x so z z

z z

H kMEnergy
H k H M

M MM M


     

 
 

or 
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     ,0 2
1 1 8.5

1

xz
so z ani so

z

HM
k H H k a

M M

M

 
 
     

       

 

Solution of Eq.(8.5) can be expressed as 

   8.6
x

z z
H

anis

H M

MH
  

 
where the anisotropy field is calculated as 

 

 
 ,0 2
8.7

1 1

xH x
anis ani

z
so

H
H H

M
k

M

 
    
 

 

Substitution of Eq.(8.6) into (8.7) gives 
 

 

   

 ,0 2
8.7

1 1

x

x

H x
anis ani

z
so H

anis

H
H H a

H
k

H

 
 

    
 

 

 
when the applied perpendicular- to- plane magnetic field Hz is  

   8.8xH
z anisH H  

The anisotropy field is independent of Hz 
 

   ,0 8.9
1

xH x
anis ani

so

H
H H

k
 


 

 
 
The anisotropy field is linearly proportional to the applied external magnetic field Hx. 
 
 
Part 9. Energy barrier for the magnetization switching 
This is the case when a magnetic field is applied along the magnetic easy axis 
(perpendicularly to the film) ( Hx=0 Hz=H), the energy is calculated from Eq.(1.6d) as 
 

       2 21 1 1 1 1.6so z z so demagE M k H M M k k e          

or 

           2 2 2cos 1 1 1 cos 1 1.6so demag soE M k k k M H M f                

where θ is the angle between the magnetization M and the film normal, 
Substitution of Eq.(7.5)  

     2
1 1 1 7.5

1ani so demag
so

M
H k k

k
   


 

into Eq.(1.6f) gives 

         2 2cos 1 cos 1 1.6
2
ani

so so

H
E k M k M H M g             
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or 

       2cos cos 1.6
1 2

ani

so

HE
H const g

k M
      


 

The maximums and minimums of energies can be found from the condition 

         0 2sin cos sin 9.1
1 2

ani

so

HE E
H

k M
  


  

         
or 

 
The energy maximum is at the magnetization angle max 

   maxcos 9.2
ani

H

H
    

In the case when the external field H is substantially smaller than the anisotropy field 
Hani, the magnetization angle of the maximum energy is closed to the hard axis 
direction max ~ +90 deg and -90 deg. 
 
Substitution of Eq. (9.2) into Eq.(1.6g)  gives the maximum energy as 

     
2

2
max 1 1 9.3

2
ani

so so
ani ani

HH H
E k M k M H M

H H

                 
 

or 

   2
max 1 9.3

2
ani

so
ani ani

MHH H
E k M H M a

H H

 
      

 
 

or 

   2
max 1 9.3

2so
ani

H M H
E k M b

H


      

 
  
The energy minimum is at θ min=0 and 180 degrees, the minimum energy is 

     2
min 1 1 9.4

2
ani

so so

H
E k M k M H M

           
 

 
The energy barrier is a difference between the minim and maximum energy 

       max min 1 1 1 9.5a
2 2

ani
barrier so so so

ani

HH M H
E E E k k M k M H

H

              
or 

     1 1 1 9.5
2 2

ani
barrier so so

ani

H M H
E k k M H

H

 
      

 
 

 
 
The magnetization switching occurs at magnetic field equals to the coercive field Hc, 
which is substantially smaller that Hani. (Hc << Hani)   In this case 

     1 1 9.6
2

ani
barrier so so

H M
E k k M H      

Note it is the energy barrier in the case when the magnetic field is along the easy axis 
and the magnetization direction is changing. It means that it is the case of the 
magnetization precession. 
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Part 10. Comparison of this full model with the oversimplified Neel model 

L. Néel, Adv. Phys., 1955 

 
In the Neel model, the magnetic energy is described as 

 
2

10.1z
PMA

M
E E M H

M
      
 

 
 

where M is the magnetization, H is external magnetic field Mz is the magnetization 
component along the easy axis and Mx is the magnetization component along the hard 
axis. Eq. 10.1 can be wrote as 

 
2

10.1z
PMA z z x x

M
E E M H M H a

M
      
 

 

 
This full model describes the magnetic energy is described as Eq. (1.6d) 

        2 21 1 1 1 10.2z so demag so z z x xE M k k k H M H M M          

 
Comparison of Eqs.(10.1a) and (10.2) gives 
 

     2 1 1 1 10.2PMA so demagE M k k     

 
From comparison of the 2nd and 3rd term, it can be concluded that the oversimplified 
Neel model are fully identical when the coefficient of the spin-orbit interaction equals 
to zero: 
 

 0 10.3sok   

It is  nearly the case for a single-layer ferromagnetic nanomagnet, but it is not the case 
for a multilayer nanomagnet. 


