Spinor in a magnetic field.

Spin precession \& Spin damping

Part 1. Introduction

The electron spin describes the features of the time-inverse symmetry for the electron.

When a magnetic field is applied at an angle with respect to the spin direction, the spin precession starts. Any spin precession is accompanied by a spin damping or an alignment of the spin along the applied magnetic field. The spin damping is an unavoidable process for the spin.

Figure 1 Two representations of the identical spin precession (left) as partially filled spin-up and spin-down

The precession damping is not a spin-conserving process and, therefore, participation of another particle with a non-zero spin (e.g. a photon, magnon etc.) is required for the precession damping to occur. In the following, the spin damping torque is calculated from a known rate of interaction of non-zero-spin particles with the magnetization.

The energy of an electron (a spin-up electron), which spin is aligned along a magnetic field H, is smaller than the energy of an electron (a spin-down electron), which spin is aligned opposite to H (See Fig.1). The energy difference is called the Zeeman energy. The magnetization precession can be represented as a quantum state, in which both the spin-down and spin-up states are partially occupied.

Part 2. Spin precession \& Spinors

Absorption of a non-zero-spin particle (e.g. a photon) excites a spin-up electron to the spin-down
energy level. A larger relative number of spin-down electrons corresponds to a larger precession angle θ. Therefore, the absorption of a non-zero-spin particle causes an increase of the precession angle. Similarly, the emission of a non-zero-spin particle reduces the number of spin-down electrons and, therefore, reduces the precession angle θ.

In the following, the dependence of precession angle on the number of spin-up and spin-down electrons is calculated using the spinor technique. A quantum state of an electron, which spin is aligned at angles θ and ϕ as shown in Fig.5, is described by a spinor S , which is an eigenvector of the following Pauli matrix:

$$
\begin{align*}
& {\left[\sigma_{x} \cos (\phi)+\sigma_{y} \sin (\phi)\right] \sin (\theta)+\sigma_{z} \cos (\theta)=} \\
& =\left[\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cos (\phi)+\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \sin (\phi)\right] \sin (\theta)+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cos (\theta) \tag{A3.1}
\end{align*}
$$

The spinor S , which is calculated as an eigenvector of (A3.1), is

$$
\begin{equation*}
\hat{S}_{\theta, \phi}=\frac{1}{\sqrt{2(1+\cos (\theta))}}\binom{1+\cos (\theta)}{\sin (\theta) \cdot e^{-i \phi}} \tag{A3.2}
\end{equation*}
$$

The wavefunction of an electron, which is described by the spinor (A3.2), can be expressed as linear combination of wavefunctions, which correspond to the spin -up $(\theta=0)$ and spin- down $(\theta=\pi)$ states or as a vector dot product:

$$
\Psi_{\theta, \phi}=\hat{S}_{\theta, \phi} \cdot\left(\begin{array}{ll}
\Psi_{\uparrow} & \Psi_{\downarrow} \tag{A3.3}
\end{array}\right)
$$

The energy difference $\Delta \mathrm{E}_{\text {zeeman }}$ between the electron states of the spin directions along and opposite to the magnetic field H is calculated as:

$$
\begin{equation*}
\Delta E_{\text {Zeeman }}=g \cdot \mu_{B} H \tag{A3.4}
\end{equation*}
$$

where g is the g - factor and μ_{B} is the Bohr magneton.
The wavefunction of the spin-up and spin-down electron states can be expressed as

$$
\begin{align*}
& \Psi_{\uparrow}(\vec{r}, t)=\Psi(\vec{r}) \cdot e^{i \frac{E_{0}}{\hbar} t} e^{+i \frac{g \cdot \mu_{B} H}{2 \hbar} t} \tag{A3.5}\\
& \Psi_{\downarrow}(\vec{r}, t)=\Psi(\vec{r}) \cdot e^{i \frac{E_{0}}{\hbar} t} e^{-i \frac{g \cdot \mu_{B} H}{2 \hbar} t}
\end{align*}
$$

Wavefunctions of (A3.5) can be expressed using the spinor representation (A3.3) as

$$
\begin{align*}
& \Psi_{\uparrow}=\binom{1}{0} \cdot\left(\begin{array}{ll}
\Psi_{\uparrow} & \Psi_{\downarrow}
\end{array}\right) \cdot e^{i\left(\frac{E_{0}}{\hbar}+\frac{g \cdot \mu_{B} H}{2 \hbar}\right) t} \tag{A3.6}\\
& \Psi_{\downarrow}=\binom{0}{e^{-i \frac{g \cdot \mu_{B} H}{\hbar} t}} \cdot\left(\begin{array}{ll}
\Psi_{\uparrow} & \Psi_{\downarrow}
\end{array}\right) \cdot e^{i\left(\frac{E_{0}}{\hbar}+\frac{g \cdot \mu_{B} H}{2 \hbar}\right) t}
\end{align*}
$$

where the spin-up state corresponds to $\theta=0^{\circ}$ and the spin-down state corresponds to $\theta=180^{\circ}$. Comparison of Eqs. (A3.6) with Eq. (A3.3) gives the expression for the spinor at an arbitrary angle θ as

$$
\begin{equation*}
\hat{S}_{\theta, \phi}=\frac{1}{\sqrt{2(1+\cos (\theta))}}\binom{1+\cos (\theta)}{\sin (\theta) \cdot e^{-i \frac{g \cdot \mu_{B} H_{t}}{\hbar} t}} \tag{A3.7}
\end{equation*}
$$

Eq.(A3.7) describes a spin precession at a precession angle θ and with the Larmor frequency ω_{L} :

$$
\begin{equation*}
\omega_{L}=\frac{g \cdot \mu_{B} H}{\hbar} \tag{A3.8}
\end{equation*}
$$

It means that the precession term of the LL equation (Eq.1) describes the Zeeman splitting and in general is a feature of the time-inverse symmetry.

The spin precession around a magnetic field can be described by a relative number of the spin-up and spin down electrons. In a simplified case when the wavefunction of the system of electrons with the spin S can be described as a sum of wavefunctions for spin-up and spin-down electrons as

$$
\begin{equation*}
\Psi_{S}=\Psi_{\uparrow} \cdot \sqrt{N_{\uparrow}}+\Psi_{\downarrow} \cdot \sqrt{N_{\downarrow}} \tag{A3.9}
\end{equation*}
$$

where N_{\uparrow} and N_{\downarrow} are the numbers of the spin- up and spin- down electrons. The expression (A3.9) corresponds to the spinor:

$$
\begin{equation*}
\hat{S}=\frac{1}{\sqrt{N_{\uparrow}+N_{\downarrow}}}\binom{\sqrt{N_{\uparrow}}}{\sqrt{N_{\downarrow}}} \tag{A3.10}
\end{equation*}
$$

Comparison of Eqs. (A3.7) and (A3.10) gives

$$
\begin{align*}
& \sqrt{n_{\uparrow}}=\frac{1+\cos (\theta)}{\sqrt{2(1+\cos (\theta))}} \tag{A3.11}\\
& \sqrt{n_{\downarrow}}=\frac{\sin (\theta)}{\sqrt{2(1+\cos (\theta))}}
\end{align*}
$$

where n_{\uparrow} and n_{\downarrow} are the relative numbers of the spin up and spin down electrons

$$
\begin{equation*}
n_{\uparrow}=\frac{N_{\uparrow}}{N_{\uparrow}+N_{\downarrow}} \quad n_{\downarrow}=\frac{N_{\downarrow}}{N_{\uparrow}+N_{\downarrow}} \tag{A3.12}
\end{equation*}
$$

Simplification of Eq.(A3.11) gives the number of spin-up and spin-down electrons, when there is a magnetization precession and the precession angle is θ, as

$$
\begin{align*}
& n_{\uparrow}=\frac{1+\cos (\theta)}{2} \tag{A3.13}\\
& n_{\downarrow}=\frac{1-\cos (\theta)}{2}
\end{align*}
$$

Figure 2 shows the filling percentage of the spin- up and spin-down levels as a function of the precession angle. The filling amounts are the same at a precession angle of 90°.

Part 3 Precession Damping \& Precession Pumping

The probability $P_{\text {pump }}$ to excite one electron from the spin-up to the spin-down level and, therefore, to increase the precession angle is linearly proportional to the number of the spin-up electrons and the number of available spin-down quantum states.

$$
\begin{equation*}
P_{p u m p}=P_{p u m p, 0} \cdot n_{\uparrow} \cdot\left(1-n_{\downarrow}\right)=P_{p u m p, 0} \cdot\left(1-n_{\downarrow}\right)^{2} \tag{A3.14}
\end{equation*}
$$

where $P_{\text {pump, } 0}$ is the probability to excite a spin-up electron into one already-empty spin-down state.

Similarly, the probability that an electron returns back to the spin-up level is calculated as

$$
\begin{equation*}
P_{\text {damp }}=P_{\text {damp }, 0} \cdot n_{\downarrow} \cdot\left(1-n_{\uparrow}\right)=P_{\text {damp }, 0} \cdot n_{\downarrow}^{2} \tag{A3.15}
\end{equation*}
$$

where $P_{\text {damp, } 0}$ is the transition probability of a spin-down electron into an empty spin-up state.
The $\mathrm{P}_{\text {pump, } 0}$ and $\mathrm{P}_{\text {damp, } 0}$ are defined by the interaction mechanism of the total spin of the localized electrons with external spin particles (magnons, phonons, spin-polarized conduction electrons).

The electron transition rate is defined as the transition probability per a unit of time. The rates of transitions between the spin-up and the spin- down levels or the pumping and damping rates can be calculated from probabilities (A3.14),

Figure 2. Percentage of spin-up and spin-down (A3.15) as

$$
\begin{align*}
& \left(\frac{\partial n_{\uparrow}}{\partial t}\right)_{\text {damp }}=R_{d} \cdot n_{\downarrow}^{2} \tag{A3.16}\\
& \left(\frac{\partial n_{\downarrow}}{\partial t}\right)_{p u m p}=R_{p} \cdot\left(1-n_{\downarrow}\right)^{2}
\end{align*}
$$

where R_{d} and R_{p} are the rates of the spin transition from the spin-down to the spin-up level and from the spin-down to the spin-up level, correspondingly.

The spin damping torque is calculated from (A3.13) (A3.16) as

$$
\begin{equation*}
\left(\frac{\partial \theta}{\partial t}\right)_{\text {damp }}=\frac{\partial \theta}{\partial n_{\downarrow}}\left(\frac{\partial n_{\downarrow}}{\partial t}\right)_{\text {damp }}=-\frac{\partial \theta}{\partial n_{\downarrow}} R_{d} \cdot n_{\downarrow}^{2}=-R_{d} \frac{n_{\downarrow}^{2}}{\sqrt{n_{\downarrow}\left(1-n_{\downarrow}\right)}} \tag{A3.17}
\end{equation*}
$$

Similarly, the spin pumping torque is calculated as

$$
\begin{equation*}
\left(\frac{\partial \theta}{\partial t}\right)_{\text {pump }}=\frac{\partial \theta}{\partial n_{\downarrow}}\left(\frac{\partial n_{\downarrow}}{\partial t}\right)_{\text {pump }}=-\frac{\partial \theta}{\partial n_{\downarrow}} R_{p} \cdot\left(1-n_{\downarrow}\right)^{2}=R_{p} \cdot \frac{\left(1-n_{\downarrow}\right)^{2}}{\sqrt{n_{\downarrow}\left(1-n_{\downarrow}\right)}} \tag{A3.18}
\end{equation*}
$$

The interaction of a spin particle with the magnetization of a nanomagnet also depends on the
precession angle θ. For example, the emission or absorption of a circularly polarized photon is linearly proportional to the alternating part of the magnetic moment. It is because the nanomagnet can be considered as an electro-magnetic antenna, which emits or absorbs photons, and the effectiveness of the photon absorption/ emission is proportional only to the alternating component of the magnetic moment. In the case of the precession around the z-axis, the alternating magnetic moment is promotional to the xy-component of the magnetization M (See Fig.5) and the spin pumping torque can be calculated from (A3.18) as:

$$
\begin{equation*}
\left(\frac{\partial \theta}{\partial t}\right)_{\text {pump }}=R_{p u m p} \cdot \frac{\left(1-n_{\downarrow}\right)^{2}}{\sqrt{n_{\downarrow}\left(1-n_{\downarrow}\right)}} \sin (\theta) \tag{A3.19}
\end{equation*}
$$

where $R_{\text {pump }}$ is the rate of the photon absorption per unit of the alternating magnetic moment. The $R_{\text {pump }}$ is linearly proportional to the photon flux, which irradiates the nanomagnet. The substitution of Eq.(A3. 13) into $\mathrm{A}(3.19)$ gives the precession pumping torque due to absorption of circular-polarized photons as

$$
\begin{equation*}
\left(\frac{\partial \theta}{\partial t}\right)_{p u m p}=R_{p u m p} \cdot \frac{(1+\cos (\theta))^{2} \sin (\theta)}{2 \sqrt{1-\cos (\theta)^{2}}} \tag{A3.20}
\end{equation*}
$$

Similarly, the emission of photons is also linearly proportional to the alternating magnetic moment and therefore the xy-component of the magnetization. The substitution of Eq.(A3. 13) into (A3.17) gives the precession damping torque due to emission of circular-polarized photons as

$$
\begin{equation*}
\left(\frac{\partial \theta}{\partial t}\right)_{\text {damp }}=-R_{\text {damp }} \frac{n_{\downarrow}^{2}}{\sqrt{n_{\downarrow}\left(1-n_{\downarrow}\right)}} \sin (\theta)=R_{\text {damp }} \frac{(1-\cos (\theta))^{2} \sin (\theta)}{2 \sqrt{1-\cos (\theta)^{2}}} \tag{A3.21}
\end{equation*}
$$

Figure 3 shows the spin pumping/ spin damping torque calculated from Eqs.(A3.20),(A3.21). In the absence of precession $\left(\theta=0^{0}\right)$, there is no damping, but the pumping is substantial. With an increase of the precession angle, the damping monotonically increases and the pumping decreases.

Figure 3 Precession damp/pump torque due to emission/ absorption
of circularly- polarized photons.

