
Spinor in a magnetic field.  

Spin precession & Spin damping 

 

 

Part 1. Introduction 

 

The electron spin describes the features of the time-inverse symmetry for the electron. 

 

When a magnetic field is applied at an angle with respect to the spin direction, the spin precession starts. 

Any spin precession is accompanied by a spin damping or an alignment of the spin along the applied 

magnetic field. The spin damping is an unavoidable process for the spin.  

 

The precession damping is not a spin-conserving process and, therefore, participation of 

another particle with a non-zero spin (e.g. a photon, magnon etc.) is required for the precession 

damping to occur. In the following, the spin damping torque is calculated from a known rate of 

interaction of non-zero-spin particles with the magnetization.  

The energy of an electron (a spin-up electron), which spin is aligned along a magnetic field H, is 

smaller than the energy of an electron (a spin-down electron), which spin is aligned opposite to H 

(See Fig.1). The energy difference is called the Zeeman energy. The magnetization precession can 

be represented as a quantum state, in which both the spin-down and spin-up states are partially 

occupied.  

 

Part 2. Spin precession & Spinors 

 

Absorption of a non-zero-spin particle (e.g. a photon) excites a spin-up electron to the spin-down 

Figure 1 Two representations of the identical spin precession (left) as partially filled spin-up and spin-down 



energy level. A larger relative number of spin-down electrons corresponds to a larger precession 

angle . Therefore, the absorption of a non-zero-spin particle causes an increase of the precession 

angle. Similarly, the emission of a non-zero-spin particle reduces the number of spin-down 

electrons and, therefore, reduces the precession angle .    

In the following, the dependence of precession angle on the number of spin-up and spin-down 

electrons is calculated using the spinor technique. A quantum state of an electron, which spin is 

aligned at angles  and  as shown in Fig.5, is described by a spinor S, which is an eigenvector of 

the following Pauli matrix: 
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 The spinor S, which is calculated as an eigenvector of (A3.1), is 
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The wavefunction of an electron, which is described by the spinor (A3.2), can be expressed as 

linear combination of wavefunctions, which correspond to the spin -up (=0) and spin- down (=) 

states or as a vector dot product: 
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The energy difference EZeeman  between the electron states of the spin directions along and 

opposite to the magnetic field H is calculated as: 

 
Zeeman BE g H    (A3.4)  

where g is the g- factor and B is the Bohr magneton. 

The wavefunction of the spin-up and spin-down electron states can be expressed as 
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Wavefunctions of (A3.5) can be expressed using the spinor representation (A3.3) as 
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where the spin-up state corresponds to =00 and the spin-down state corresponds to =1800. 

Comparison of Eqs. (A3.6) with Eq. (A3.3) gives the expression for the spinor at an arbitrary 

angle   as 
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Eq.(A3.7) describes a spin precession at a precession angle  and with the Larmor frequency L: 
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It means that the precession term of the LL equation (Eq.1) describes the Zeeman splitting and 

in general is a feature of the time-inverse symmetry.  

The spin precession around a magnetic field can be described by a relative number of the 

spin-up and spin down electrons. In a simplified case when the wavefunction of the system of 

electrons with the spin S can be described as a sum of wavefunctions for spin-up and spin-down 

electrons as 
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where N
and N

 are the numbers of the spin- up and spin- down electrons. The expression 

(A3.9) corresponds to the spinor:   
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Comparison of Eqs. (A3.7) and (A3.10) gives 

 

 
  

 
  

1 cos

2 1 cos

sin

2 1 cos

n

n





















 (A3.11) 

where n and n  are the relative numbers of the spin up and spin down electrons 
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Simplification of Eq.(A3.11) gives the number of spin-up and spin-down electrons, when there is 

a magnetization precession and the precession angle is  , as  
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Figure 2 shows the filling percentage of the spin- up and spin-down levels as a function of the 

precession angle. The filling amounts are the same at a precession angle of 900. 

 

Part 3 Precession Damping & Precession Pumping  



 

The probability Ppump to excite one electron from the spin-up to the spin-down level and, 

therefore, to increase the precession angle is linearly proportional to the number of the spin-up 

electrons and the number of available spin-down quantum states. 
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where Ppump,0 is the probability to excite a spin-up electron into one already-empty spin-down 

state.  

Similarly, the probability that an electron returns back to the spin-up level is calculated as 
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where Pdamp,0 is the transition probability of a spin-down electron into an empty spin-up state. 

The Ppump,0 and Pdamp,0 are defined by the 

interaction mechanism of the total spin of 

the localized electrons with external spin 

particles (magnons, phonons, 

spin-polarized conduction electrons).  

The electron transition rate is defined 

as the transition probability per a unit of 

time. The rates of transitions between the 

spin-up and the spin- down levels or the 

pumping and damping rates can be 

calculated from probabilities (A3.14), 

(A3.15) as 
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where Rd and Rp are the rates of the spin transition from the spin-down to the spin-up level and 

from the spin-down to the spin-up level, correspondingly.  

The spin damping torque is calculated from (A3.13) (A3.16) as 
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Similarly, the spin pumping torque is calculated as 
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The interaction of a spin particle with the magnetization of a nanomagnet also depends on the 

Figure 2. Percentage of spin-up and spin-down 
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precession angle . For example, the emission or absorption of a circularly- polarized photon is 

linearly proportional to the alternating part of the magnetic moment. It is because the 

nanomagnet can be considered as an electro-magnetic antenna, which emits or absorbs photons, 

and the effectiveness of the photon absorption/ emission is proportional only to the alternating 

component of the magnetic moment. In the case of the precession around the z-axis, the 

alternating magnetic moment is promotional to the xy-component of the magnetization M (See 

Fig.5)  and the spin pumping torque can be calculated from (A3.18) as: 
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where Rpump is the rate of the photon absorption per unit of the alternating magnetic moment. 

The Rpump is linearly proportional to the photon flux, which irradiates the nanomagnet. The 

substitution of Eq.(A3. 13) into A(3.19) gives the precession pumping torque due to absorption of 

circular-polarized photons as 
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Similarly, the emission of photons is also linearly proportional to the alternating magnetic 

moment and therefore the xy-component of the magnetization. The substitution of Eq.(A3. 13) 

into (A3.17) gives the precession damping torque due to emission of circular-polarized photons as  
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Figure 3 shows the spin pumping/ spin damping torque calculated from Eqs.(A3.20),(A3.21). 

In the absence of precession (=00), there is no damping, but the pumping is substantial. With an 

increase of the precession angle, the damping monotonically increases and the pumping 

decreases. 
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Figure 3 Precession damp/pump torque due to emission/ absorption 

of circularly- polarized photons.  


