Classical damping torque. Analytical solution

Classical damping torque as it is described in Landau-Lifshitz equation can be expressed as
$\vec{T}=\lambda[\vec{M} \times[\vec{r} \times \vec{M}]]$
where λ is the precession damping constant, which is assumed to be a constant; r is any vector in space. The torque T turns magnetization towards vector r independently of an initial direction of the magnetization M .

Note, for any realistic precession dumping both the precession damping constant λ and the magnetization M depend on the precession angle θ. However, in the classical calculation they both are assumed to be constants. This assumption is used in the calculateions below. .

First, let us rotate the coordinate system that the y -axis is along r vector. Then,
$\vec{T}=\lambda[\vec{M} \times[\vec{y} \times \vec{M}]]$
Next let us rotate coordinate system in the xz plane, so $\mathrm{Mz}=0$
Then, the magnetization has x and y components as
$\vec{M}=\left(\begin{array}{c}M_{x} \\ M_{y} \\ 0\end{array}\right)$
$\vec{y} \times \vec{M}=\left(\begin{array}{ccc}\vec{x} & \vec{y} & \vec{z} \\ 0 & 1 & 0 \\ M_{x} & M_{y} & 0\end{array}\right)=-M_{x} \cdot \vec{z}$

The torque of $\mathrm{Eq}(2)$ is simplified as

$$
\vec{T}=\lambda[\vec{M} \times[\vec{y} \times \vec{M}]]=\lambda\left(\begin{array}{ccc}
\vec{x} & \vec{y} & \vec{z} \tag{3}\\
M_{x} & M_{y} & 0 \\
0 & 0 & -M_{x}
\end{array}\right)=\lambda\left[-M_{x} M_{y} \cdot \vec{x}+M_{x}^{2} \cdot \vec{y}\right]
$$

The dynamic equation for the magnetization precession damping can be written as

$$
\begin{equation*}
\frac{\partial \vec{M}}{\partial t}=\vec{T}=\lambda\left[-M_{x} M_{y} \cdot \vec{x}+M_{x}^{2} \cdot \vec{y}\right] \tag{4}
\end{equation*}
$$

or explicitly

$$
\left(\begin{array}{c}
\frac{\partial M_{x}}{\partial t} \tag{4a}\\
\frac{\partial M_{y}}{\partial t} \\
\frac{\partial M_{z}}{\partial t}
\end{array}\right)=\lambda\left(\begin{array}{c}
-M_{x} M_{y} \\
M_{x}^{2} \\
0
\end{array}\right)
$$

The solution of the $3^{\text {rd }}$ equation of Eq.(4a) is $\mathrm{Mz}=0$, since $\mathrm{Mz}=0$ at $\mathrm{t}=0$.
Instead Mx and My , new independences M and theta are introduced

$$
\begin{align*}
& M_{x}=M \cdot \sin (\theta) \\
& M_{y}=M \cdot \cos (\theta) \tag{6}
\end{align*}
$$

Then

$$
\begin{align*}
& \frac{\partial M_{x}}{\partial t}=\sin (\theta) \frac{\partial M}{\partial t}+\cos (\theta) \frac{\partial \theta}{\partial t} \tag{7}\\
& \frac{\partial M_{y}}{\partial t}=\cos (\theta) \frac{\partial M}{\partial t}-\sin (\theta) \frac{\partial \theta}{\partial t}
\end{align*}
$$

Substitution of Eq.(7) into $1^{\text {st }}$ and 2 ${ }^{\text {nd }}$ Eqs. Of (4a) gives

$$
\begin{align*}
& \sin (\theta) \frac{\partial M}{\partial t}+\cos (\theta) \frac{\partial \theta}{\partial t}=-\lambda \cdot M^{2} \sin (\theta) \cdot \cos (\theta) \\
& \cos (\theta) \frac{\partial M}{\partial t}-\sin (\theta) \frac{\partial \theta}{\partial t}=\lambda \cdot M^{2} \sin ^{2}(\theta) \tag{8}
\end{align*}
$$

Let us divide $1^{\text {st }}$ Eq. on cos and $2^{\text {nd }}$ Eq.on sin. Then
$\frac{\sin (\theta)}{\cos (\theta)} \frac{\partial M}{\partial t}+M \frac{\partial \theta}{\partial t}=-\lambda \cdot M^{2} \sin (\theta)$
$\frac{\cos (\theta)}{\sin (\theta)} \frac{\partial M}{\partial t}-M \frac{\partial \theta}{\partial t}=\lambda \cdot M^{2} \sin (\theta)$
Summing up two eqs of (9) gives

$$
\begin{equation*}
\left(\frac{\sin (\theta)}{\cos (\theta)}+\frac{\cos (\theta)}{\sin (\theta)}\right) \frac{\partial M}{\partial t}=0 \tag{10}
\end{equation*}
$$

The solution of Eq.(10) is

$$
\begin{equation*}
\frac{\partial M}{\partial t}=0 \tag{11}
\end{equation*}
$$

It means that the magnitude of the magnetization does not change in time as it is assumed in the classic mechanism of the precession damping.

Substitution of Eq.(11) into Eq.(9) gives
$\cos (\theta) M \frac{\partial \theta}{\partial t}=-\lambda \cdot M^{2} \sin (\theta) \cdot \cos (\theta)$
$-\sin (\theta) M \frac{\partial \theta}{\partial t}=\lambda \cdot M^{2} \sin ^{2}(\theta)$
Two Eqs of (12) are exactly the same and can be written as
$\frac{\partial \theta}{\partial t}=-\lambda M \cdot \sin (\theta)$

Since
$\int \frac{d \theta}{\sin (\theta)}=\log (\tan (\theta / 2))$
The solution of Eq.(13) is
$\log (\tan (\theta / 2))=-\lambda \cdot M \cdot t$
or
$\theta=2 \cdot \arctan \left(e^{-\lambda \cdot M \cdot t}\right)$

