Basic relation for the Hall effect and AMR

Hall effect

$$
\begin{equation*}
j_{\perp, \text { Hall }}=\alpha_{\text {Hall }} \cdot j_{\|, \text {bias }} \tag{1.1}
\end{equation*}
$$

AMR effect

$$
\begin{equation*}
j_{\|, \mathrm{AMR}}=\alpha_{A M R} \cdot j_{\|, \text {bias }} \tag{1.2}
\end{equation*}
$$

AMR ratio vs AMR angle

AMR current depends on the magnetization direction with respect to the bias current direction.

$$
\begin{align*}
& j_{\|, \text {min }}=j_{\|, \text {bias }}-j_{\|, \text {AMR }} \\
& j_{\|, \text {max }}=j_{\|, \text {bias }} \tag{1.2}
\end{align*}
$$

$A M R=\frac{R_{\max }-R_{\min }}{\left(R_{\max }+R_{\min }\right) / 2}=2 \frac{\frac{V}{j_{\|, \text {max }}}-\frac{V}{j_{\|, \text {min }}}}{\frac{V}{j_{\|, \text {max }}}+\frac{V}{j_{\|, \text {min }}}}=\frac{1-\frac{j_{\|, \text {min }}}{j_{\|, \text {max }}}}{1+\frac{j_{\|, \text {min }}}{j_{\|, \text {max }}}}=\frac{\frac{j_{\|, \text {AMR }}}{j_{\|, \text {bias }}}}{1-\frac{j_{\|, \text {AMR }}}{j_{\|, \text {bias }}}}=\frac{\alpha_{A M R}}{1-\alpha_{A M R}} \approx \alpha_{A M R}$
$A M R=\frac{R_{\max }-R_{\min }}{\left(R_{\max }+R_{\min }\right) / 2}=\alpha_{A M R}$

Hall voltage vs, Hall angle

Hall current flowing perpendicularly to the wire is calculated as

$$
\begin{equation*}
j_{\perp, \text { Hall }}=\alpha_{\text {Hall }} \cdot j_{\| \mid \text {bias }}=\alpha_{\text {Hall }} \cdot \sigma \cdot \frac{V}{L} \tag{4.2}
\end{equation*}
$$

where σ is the wire conductivity, \boldsymbol{L} is wire length and \boldsymbol{V} is applied bias voltage between ends of wire.
The Hall current creates a charge accumulation at the wall of nanowire. The charge accumulation creates a Hall voltage $\boldsymbol{V}_{\text {Hall }}$ across the width of metallic wire and a current flows across the in opposite direction to the Hall current. This balancing current is calculated as:
$j_{\perp, \text { balance }}=\sigma \frac{V_{\text {Hall }}}{w}$
In the equilibrium, the Hall current and teh balancing current are equal and opposite:
$j_{\perp, \text { balance }}=j_{\perp, \text { Hall }} \quad$ (4.4)
Substitution of Eqs into Eq. gives
$\sigma \frac{V_{\text {Hall }}}{w}=\alpha_{\text {Hall }} \cdot \sigma \cdot \frac{V}{L}$
or
$\alpha_{\text {Hall }}=\frac{V_{\text {Hall }}}{V} \frac{L}{w}$

Hall resistance vs Hall angle

The Hall resistance is defined as a ratio of the Hall voltage to the bias current

$$
\begin{equation*}
R_{\text {Hall }}=\frac{V_{\text {Hall }}}{J_{\|}} \tag{4.8}
\end{equation*}
$$

the Ohm's law reads

$$
\begin{equation*}
J_{\|}=\sigma \frac{V}{L} \cdot w \cdot \text { thick } \tag{4.9}
\end{equation*}
$$

where thick is the thickness of the metallic wire

$$
\begin{equation*}
R_{\text {Hall }}=\frac{V_{\text {Hall }}}{V} \frac{L}{\sigma \cdot w \cdot \text { thick }}=\alpha_{\text {Hall }} \frac{1}{\sigma \cdot \text { thick }} \tag{4.10}
\end{equation*}
$$

Therefore, the Hall resistance can be calculated from

$$
\begin{equation*}
R_{\text {Hall }}=\alpha_{\text {Hall }} \frac{1}{\sigma \cdot \text { thick }} \tag{4.10}
\end{equation*}
$$

