Spinor \& Spin Direction

The spinor is an eigen vector of the Pauli matrix:

There are three Pauli matrixes corresponded to each direction:

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The spinor is an eigenvector of a Pauli matrix. A quantum state of an electron, which spin direction is at angles θ and ϕ as shown in Fig.5, is described by a spinor S , which is eigen vector of the following Pauli matrix:

$$
\begin{aligned}
& \sigma=\left[\sigma_{x} \cos (\phi)+\sigma_{y} \sin (\phi)\right] \sin (\theta)+\sigma_{z} \cos (\theta)= \\
& =\left[\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cos (\phi)+\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \sin (\phi)\right] \sin (\theta)+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cos (\theta)
\end{aligned}
$$

Eigenvalue of any Pauli matrix is 1 . Therefore, the spinor (eigenvector) $\binom{a}{b}$ can be found from equation
$\sigma \cdot S=S$
To make the calculation simple, at first the spinor is found for a simplified case

Simplified case 1.

The spin direction is the xy plane. $\theta=\pi / 2$
The Pauli matrix is
$\sigma_{x y}=\sigma_{x} \cos (\phi)+\sigma_{y} \sin (\phi)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \cos (\phi)+\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right) \sin (\phi)=\left(\begin{array}{cc}0 & e^{-i \cdot \phi} \\ e^{i \cdot \phi} & 0\end{array}\right)$
The spinor S_{xy} is eigenvector of σ_{xy}
$\sigma_{x y} \cdot S_{x y}=S_{x y}$
$S_{x y}=\frac{1}{\sqrt{2}}\binom{1}{e^{i \phi}}$
When spin is along the x axis $\phi=0$
$S_{x}=\frac{1}{\sqrt{2}}\binom{1}{1}$
When spin is opposite to the x axis $\phi=\pi$
$S_{-x}=\frac{1}{\sqrt{2}}\binom{1}{-1}$

When spin is along the y - axis $\phi=\pi / 2$
$S_{y}=\frac{1}{\sqrt{2}}\binom{1}{i}$
When spin is along the y - axis $\phi=\pi / 2$
$S_{-y}=\frac{1}{\sqrt{2}}\binom{1}{-i}$

- Simplified case 2. The spin direction is the xz plane. $\phi=0$

$$
\sigma_{x z}=\sigma_{x} \sin (\theta)+\sigma_{z} \cos (\theta)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \sin (\theta)+\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cos (\theta)=\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
\sin (\theta) & -\cos (\theta)
\end{array}\right)
$$

The spinor (eigenvector) of is

$$
S_{x z}=\frac{1}{\sqrt{2(1-\cos (\theta))}}\binom{\sin (\theta)}{1-\cos (\theta)} \quad \theta \neq 0
$$

or

$$
S_{x z}=\frac{1}{\sqrt{2(1+\cos (\theta))}}\binom{1+\cos (\theta)}{\sin (\theta)} \quad \theta \neq \pi
$$

When spin is along the z - axis $\theta=0$
$S_{z}=\binom{1}{0}$
When spin is opposite to the z - axis $\theta=\pi$
$S_{z}=\binom{0}{1}$

When spin is along the x axis $\theta=\pi / 2$
$S_{x}=\frac{1}{\sqrt{2}}\binom{1}{1}$
When spin is opposite to the x axis $\theta=-\pi / 2$
$S_{-x}=\frac{1}{\sqrt{2}}\binom{1}{-1}$
general case

$$
S=\frac{1}{\sqrt{2(1-\cos (\theta))}}\binom{\sin (\theta)}{(1-\cos (\theta)) e^{i \phi}} \quad \theta \neq 0
$$

or

$$
S=\frac{1}{\sqrt{2(1+\cos (\theta))}}\binom{1+\cos (\theta)}{\sin (\theta) e^{i \phi}} \quad \theta \neq \pi
$$

